论文标题
商品 - alma 2.0:主序列中的starburst揭示了调节星系进化预先抑制的紧凑恒星形成
GOODS-ALMA 2.0: Starbursts in the main sequence reveal compact star formation regulating galaxy evolution prequenching
论文作者
论文摘要
紧凑的星形形成似乎在尘土飞扬的星系(SFG)中通常很常见。但是,它在银河进化中缩放关系设定的框架中的作用尚待理解。在这项工作中,我们跟进了《商品 - alma 2.0调查》中的Galaxy样品,这是一项1.1mm的Alma盲目调查,使用两种阵列配置覆盖了72.42arcmin $^2 $的连续面积。我们得出了物理特性,例如恒星形成速率,气体分数,耗尽时间标准和灰尘温度,用于根据调查建造的星系样品。存在着一个表现出类似Starburst的短耗尽时间尺度的星系子集,但它们位于所谓的SFG主序列的散射中。与典型的SFG相比,它们以最短的耗尽时间标准,最低的气体分数和最高的灰尘温度,与典型的SFG相比,它们的特征在于主序列中,并显示出最紧凑的恒星形成,其特征是最短的耗尽时间尺度和最高的灰尘温度。它们也非常庞大,占样本中最大星系的$ \ sim 60 \%$($ \ log(m _ {\ rm {*}}}/m _ {\ odot})> 11.0 $)。我们发现正在进行的恒星形成区域的区域与样品的派生物理特性之间存在趋势,从而揭示了紧凑型星形形成作为这些特性的物理驱动器的作用。主要序列中的Starburst似乎是这些趋势的极端情况。我们讨论了星系进化的可能场景,以解释从我们的星系样本中得出的结果。我们的发现表明,恒星形成率是通过气体和恒星形成压缩在SFG中维持的,即使它们的气体馏分很低,也可以使它们保持在主序列之内,并且大概它们正处于静止状态。
Compact star formation appears to be generally common in dusty star-forming galaxies (SFGs). However, its role in the framework set by the scaling relations in galaxy evolution remains to be understood. In this work we follow up on the galaxy sample from the GOODS-ALMA 2.0 survey, an ALMA blind survey at 1.1mm covering a continuous area of 72.42arcmin$^2$ using two array configurations. We derived physical properties, such as star formation rates, gas fractions, depletion timescales, and dust temperatures for the galaxy sample built from the survey. There exists a subset of galaxies that exhibit starburst-like short depletion timescales, but they are located within the scatter of the so-called main sequence of SFGs. These are dubbed starbursts in the main sequence and display the most compact star formation and they are characterized by the shortest depletion timescales, lowest gas fractions, and highest dust temperatures of the galaxy sample, compared to typical SFGs at the same stellar mass and redshift. They are also very massive, accounting for $\sim 60\%$ of the most massive galaxies in the sample ($\log (M_{\rm{*}}/M_{\odot}) > 11.0$). We find trends between the areas of the ongoing star formation regions and the derived physical properties for the sample, unveiling the role of compact star formation as a physical driver of these properties. Starbursts in the main sequence appear to be the extreme cases of these trends. We discuss possible scenarios of galaxy evolution to explain the results drawn from our galaxy sample. Our findings suggest that the star formation rate is sustained in SFGs by gas and star formation compression, keeping them within the main sequence even when their gas fractions are low and they are presumably on the way to quiescence.