论文标题
改进的败血症的数学模型:复杂非线性传染病系统的建模,分叉分析和最佳控制研究
An Improved Mathematical Model of Sepsis: Modeling, Bifurcation Analysis, and Optimal Control Study for Complex Nonlinear Infectious Disease System
论文作者
论文摘要
败血症是威胁生命的医疗紧急情况,这是全球死亡的主要原因,也是美国死亡率第二高的原因。在综合败血症系统上研究最佳控制治疗或干预策略是降低死亡率的关键。首先,为此,本文改善了我们以前的工作中提出的复杂的非线性败血症模型。然后,针对每个败血症子系统进行分叉分析,以研究某些系统参数下的模型行为。分叉分析结果还进一步表明了控制治疗和干预疗法的必要性。如果败血症系统未在某些参数和初始系统值设置下添加任何控件,则系统将随着时间的流逝执行持续的炎症结果。因此,我们将复杂的改进的非线性败血症模型开发为败血症的最佳控制模型,然后使用现有诊所实践中建议的一些有效的生物标志物作为优化目标功能来衡量败血症的发展。除此之外,还引入了通过结合复发性神经网络(RNN-BO算法)的贝叶斯优化算法,以预测研究败血症最佳控制系统的最佳控制策略。来自其他优化算法的RNN-BO算法之间的差异是,一旦给出任何新的初始系统值设置(初始值与患者的初始条件相关联),RNN-BO算法就可以快速预测基于任何新SEPIS患者的历史最佳控制数据,可以快速预测相应的时间序列最佳控制。为了证明RNN-BO算法在求解复杂非线性败血症系统上最佳控制解决方案方面的有效性和效率,通过与本文中的其他优化算法进行比较来实现一些数值模拟。
Sepsis is a life-threatening medical emergency, which is a major cause of death worldwide and the second highest cause of mortality in the United States. Researching the optimal control treatment or intervention strategy on the comprehensive sepsis system is key in reducing mortality. For this purpose, first, this paper improves a complex nonlinear sepsis model proposed in our previous work. Then, bifurcation analyses are conducted for each sepsis subsystem to study the model behaviors under some system parameters. The bifurcation analysis results also further indicate the necessity of control treatment and intervention therapy. If the sepsis system is without adding any control under some parameter and initial system value settings, the system will perform persistent inflammation outcomes as time goes by. Therefore, we develop our complex improved nonlinear sepsis model into a sepsis optimal control model, and then use some effective biomarkers recommended in existing clinic practices as optimization objective function to measure the development of sepsis. Besides that, a Bayesian optimization algorithm by combining Recurrent neural network (RNN-BO algorithm) is introduced to predict the optimal control strategy for the studied sepsis optimal control system. The difference between the RNN-BO algorithm from other optimization algorithms is that once given any new initial system value setting (initial value is associated with the initial conditions of patients), the RNN-BO algorithm is capable of quickly predicting a corresponding time-series optimal control based on the historical optimal control data for any new sepsis patient. To demonstrate the effectiveness and efficiency of the RNN-BO algorithm on solving the optimal control solution on the complex nonlinear sepsis system, some numerical simulations are implemented by comparing with other optimization algorithms in this paper.