论文标题

加权图中双胞胎之间的量子状态转移

Quantum state transfer between twins in weighted graphs

论文作者

Kirkland, Stephen, Monterde, Hermie, Plosker, Sarah

论文摘要

简单的未加权图中的双顶点是具有相同邻居的顶点,在具有可能循环的加权图的情况下,相应的入射边缘具有相等的权重。在本文中,我们探讨了双顶点在量子状态转移中的作用。特别是,我们提供了周期性,完美的状态转移和相当良好的状态转移,而在加权图中的双顶点之间的邻接,拉普拉斯和无标志性的laplacian矩阵。作为应用程序,我们在常规图上提供了所有简单的未加权双锥的特征,这些图表表现出周期性,完美的状态转移和相当良好的状态转移。

Twin vertices in simple unweighted graphs are vertices that have the same neighbours and, in the case of weighted graphs with possible loops, the corresponding incident edges have equal weights. In this paper, we explore the role of twin vertices in quantum state transfer. In particular, we provide characterizations of periodicity, perfect state transfer, and pretty good state transfer between twin vertices in a weighted graph with respect to its adjacency, Laplacian and signless Laplacian matrices. As an application, we provide characterizations of all simple unweighted double cones on regular graphs that exhibit periodicity, perfect state transfer, and pretty good state transfer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源