论文标题

图像分析中的游览集合组合的空间置信区

Spatial Confidence Regions for Combinations of Excursion Sets in Image Analysis

论文作者

Maullin-Sapey, Thomas, Schwartzman, Armin, Nichols, Thomas E.

论文摘要

成像数据中的游览集的分析对于广泛的科学学科,例如神经影像,气候和宇宙学至关重要。尽管文献越来越多,但几乎没有关于在同一空间区域进行采样的过程的比较,但反映了不同的研究条件的比较。鉴于一组渐近高斯随机场,每个场都对应于针对不同研究条件的样本,该工作旨在提供有关所有领域跨越偏移集的相交或联合的置信陈述。这样的空间区域具有自然利益,因为它们直接与“所有随机场都超过预定阈值?”或“至少一个随机场在哪里超过预定阈值?”的问题。为了评估存在的空间可变性程度,我们开发了一种方法,该方法提供了所需的置信度,是由逻辑结合(即设置的相交)或分离(即设置工会)定义的空间区域的子集和超集,而没有任何不同磁场之间的假设。该方法通过广泛的模拟进行了验证,并使用Task-FMRI数据集证明了该方法,以识别具有工作记忆任务四个变体的激活的大脑区域。

The analysis of excursion sets in imaging data is essential to a wide range of scientific disciplines such as neuroimaging, climatology and cosmology. Despite growing literature, there is little published concerning the comparison of processes that have been sampled across the same spatial region but which reflect different study conditions. Given a set of asymptotically Gaussian random fields, each corresponding to a sample acquired for a different study condition, this work aims to provide confidence statements about the intersection, or union, of the excursion sets across all fields. Such spatial regions are of natural interest as they directly correspond to the questions "all random fields exceed a predetermined threshold?", or "Where does at least one random field exceed a predetermined threshold?". To assess the degree of spatial variability present, we develop a method that provides, with a desired confidence, subsets and supersets of spatial regions defined by logical conjunctions (i.e. set intersections) or disjunctions (i.e. set unions), without any assumption on the dependence between the different fields. The method is verified by extensive simulations and demonstrated using a task-fMRI dataset to identify brain regions with activation common to four variants of a working memory task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源