论文标题

类型可定义的NIP字段是Artin-Schreier关闭的

Type-definable NIP fields are Artin-Schreier closed

论文作者

Johnson, Will

论文摘要

让$ k $成为nip理论中可定义的无限领域。如果$ k $具有特征性$ p> 0 $,则$ k $是Artin-Schreier关闭(它没有Artin-Schreier扩展名)。结果,$ p $不划分$ k $的任何有限可分离扩展的程度。这概括了Kaplan,Scanlon和Wagner的定理。

Let $K$ be a type-definable infinite field in an NIP theory. If $K$ has characteristic $p > 0$, then $K$ is Artin-Schreier closed (it has no Artin-Schreier extensions). As a consequence, $p$ does not divide the degree of any finite separable extension of $K$. This generalizes a theorem of Kaplan, Scanlon, and Wagner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源