论文标题

Anomman:在多视图归因网络上检测异常

AnomMAN: Detect Anomaly on Multi-view Attributed Networks

论文作者

Chen, Ling-Hao, Li, He, Zhang, Wanyuan, Huang, Jianbin, Ma, Xiaoke, Cui, Jiangtao, Li, Ning, Yoo, Jaesoo

论文摘要

归因网络的异常检测被广泛用于在线购物,金融交易,通信网络等。但是,大多数现有的作品试图检测属性网络上的异常情况仅考虑一种类型的交互,因此他们无法处理多视图属性网络上的各种交互。共同考虑所有不同类型的交互并检测多视图归因网络的异常实例仍然是一项具有挑战性的任务。在本文中,我们提出了一个名为Anomman的基于图卷积的框架,以检测多视图属性网络的异常。为了共同考虑在多视图归因网络上的属性和各种交互,我们使用注意机制来定义网络中所有视图的重要性。由于图形卷积操作的低通特性会过滤出大多数高频信号(Aonmaly信号),因此不能直接应用于异常检测任务。 Anomman引入了图形自动编码器模块,以将低通功能的劣势变成优势。根据现实世界数据集的实验,Anomman的表现优于最新模型和我们提出的模型的两个变体。

Anomaly detection on attributed networks is widely used in online shopping, financial transactions, communication networks, and so on. However, most existing works trying to detect anomalies on attributed networks only consider a single kind of interaction, so they cannot deal with various kinds of interactions on multi-view attributed networks. It remains a challenging task to jointly consider all different kinds of interactions and detect anomalous instances on multi-view attributed networks. In this paper, we propose a graph convolution-based framework, named AnomMAN, to detect Anomaly on Multi-view Attributed Networks. To jointly consider attributes and all kinds of interactions on multi-view attributed networks, we use the attention mechanism to define the importance of all views in networks. Since the low-pass characteristic of graph convolution operation filters out most high-frequency signals (aonmaly signals), it cannot be directly applied to anomaly detection tasks. AnomMAN introduces the graph auto-encoder module to turn the disadvantage of low-pass features into an advantage. According to experiments on real-world datasets, AnomMAN outperforms the state-of-the-art models and two variants of our proposed model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源