论文标题
可重新配置的智能表面启用了空间多路复用,并完全卷积网络
Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with Fully Convolutional Network
论文作者
论文摘要
可重新配置的智能表面(RIS)是一种未来无线通信系统的新兴技术。在这项工作中,我们考虑RIS启用的下行链路空间多路复用,以实现加权总和(WSR)最大化。在文献中,大多数解决方案都使用基于梯度的交替优化,该优化具有适度的性能,高复杂性和有限的可扩展性。我们建议应用一个完全卷积网络(FCN)来解决此问题,该问题最初是为图像的语义分割而设计的。 RI的矩形形状以及与相邻RIS天线的通道的空间相关性,因为它们之间的短距离鼓励我们将其应用于RIS构型。我们设计了一组通道功能,其中包括通过RIS和Direct Channel的级联通道。在基站(BS)中,使用可区分的最小平方误差(MMSE)预编码器用于预处理,然后将加权最小平方误差(WMMSE)预编码器用于微调,这是无分化的,更复杂的,更复杂的,但可以实现更好的性能。评估结果表明,所提出的解决方案具有更高的性能,并且比基线更快。因此,它可以更好地扩展到大量天线,从而使RIS更接近实际部署。
Reconfigurable intelligent surface (RIS) is an emerging technology for future wireless communication systems. In this work, we consider downlink spatial multiplexing enabled by the RIS for weighted sum-rate (WSR) maximization. In the literature, most solutions use alternating gradient-based optimization, which has moderate performance, high complexity, and limited scalability. We propose to apply a fully convolutional network (FCN) to solve this problem, which was originally designed for semantic segmentation of images. The rectangular shape of the RIS and the spatial correlation of channels with adjacent RIS antennas due to the short distance between them encourage us to apply it for the RIS configuration. We design a set of channel features that includes both cascaded channels via the RIS and the direct channel. In the base station (BS), the differentiable minimum mean squared error (MMSE) precoder is used for pretraining and the weighted minimum mean squared error (WMMSE) precoder is then applied for fine-tuning, which is nondifferentiable, more complex, but achieves a better performance. Evaluation results show that the proposed solution has higher performance and allows for a faster evaluation than the baselines. Hence it scales better to a large number of antennas, advancing the RIS one step closer to practical deployment.