论文标题
量子统计能量及其新颖的伪依赖性依赖性
Quantum statistical fluctuation of energy and its novel pseudo-gauge dependence
论文作者
论文摘要
我们讨论了Spin-Zero和Spin Half颗粒的热相对论气体子系统中能量的量子统计波动。我们明确显示了能量量子统计波动的系统大小依赖性。我们的结果表明,随着系统尺寸的减少,量子统计波动大大增加。作为框架的一致性,我们还认为,如果我们认为子系统的大小足够大,那么量子统计波动会带来已知的统计能量波动结果。对于旋转半粒子的量子波动显示一些有趣的新特征。我们表明,在一个小的子系统量子统计中,自旋半颗粒的能量波动取决于能量巨孔张量的各种伪规定选择。有趣的是,对于针对不同伪规的选择获得的足够大的子系统量子波动会汇聚,我们恢复了以能量统计波动而闻名的规范 - 集结公式。我们的计算非常通用,每当与热系统打交道时,都可以应用于物理的任何分支。作为一种实际应用,我们认为我们的结果可用于确定粗粒度量表,以介绍与强相互作用物质相关的经典能量密度或流体元件的概念,尤其是对于重离子碰撞中产生的小型系统。
We discuss the quantum statistical fluctuations of energy in subsystems of hot relativistic gas for both spin-zero and spin half particles. We explicitly show the system size dependence of the quantum statistical fluctuation of energy. Our results show that with decreasing system size quantum statistical fluctuations increase substantially. As the consistency of the framework, we also argue that the quantum statistical fluctuations give rise to the known result for statistical fluctuation of energy in the canonical ensemble if we consider the size of the subsystem to be sufficiently large. For a spin-half particle quantum fluctuations show some interesting novel features. We show that within a small sub-system quantum statistical fluctuation of energy for spin half particles depends on the various pseudo-gauge choices of the energy-momentum tensor. Interestingly, for sufficiently large subsystems quantum fluctuations obtained for different pseudo-gauge choices converge and we recover the canonical-ensemble formula known for statistical fluctuations of energy. Our calculation is very general and can be applied to any branch of physics whenever one deals with a thermal system. As a practical application, we argue that our results can be used to determine a coarse-graining scale to introduce the concept of classical energy density or fluid element relevant for the strongly interacting matter, in particular for small systems produced in heavy-ion collisions.