论文标题

在较高维度的迪里奇莱特非不良矩阵集的一般豪斯多夫度量

Generalised Hausdorff measure of sets of Dirichlet non-improvable matrices in higher dimensions

论文作者

Bakhtawar, Ayreena, Simmons, David

论文摘要

令$ψ:\ mathbb r _ {+} \ to \ mathbb r _ {+} $为非信息功能。一对$(a,\ mathbf b),$ a $是一个真正的$ m \ times n $矩阵和$ \ mathbf b \ in \ mathbb r^{m},如果系统$ \ | a \ a \ a \ m m马理\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ | \ Mathbf Q \ |^n <t $$可在$ \ Mathbf p \ in \ Mathbb z^{m}中解决,$ $ \ Mathbf q \ in \ Mathbb z^{n} $用于所有足够大的$ t $ t $ where $ t $ where $ \ cdot \ cdot \ cdot \ cdot \ | $ deNotes the supremummum norm。对于$ψ$ -Dirichlet不可销售的套件,Kleinbock - Wadleigh(2019)证明了Lebesgue测量标准,而Kim-Kim(2021)建立了Hausdorff量度的结果。在本文中,我们获得了Kim-kim(2021)$ψ$ -Dirichlet不可销售的Kim-Kim(2021)结果的广义Hausdorff $ f $ -Measure版本。

Let $ψ:\mathbb R_{+}\to \mathbb R_{+}$ be a nonincreasing function. A pair $(A,\mathbf b),$ where $A$ is a real $m\times n$ matrix and $\mathbf b\in\mathbb R^{m},$ is said to be $ψ$-Dirichlet improvable, if the system $$\|A\mathbf q +\mathbf b-\mathbf p\|^m<ψ(T), \quad \|\mathbf q\|^n<T$$ is solvable in $\mathbf p\in\mathbb Z^{m},$ $\mathbf q\in\mathbb Z^{n}$ for all sufficiently large $T$ where $\|\cdot\|$ denotes the supremum norm. For $ψ$-Dirichlet non-improvable sets, Kleinbock--Wadleigh (2019) proved the Lebesgue measure criterion whereas Kim--Kim (2021) established the Hausdorff measure results. In this paper we obtain the generalised Hausdorff $f$-measure version of Kim--Kim (2021) results for $ψ$-Dirichlet non-improvable sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源