论文标题

线性涉及的Moreau增强 - 超空间模型:稀疏建模和稳定的异常值回归

Linearly-involved Moreau-Enhanced-over-Subspace Model: Debiased Sparse Modeling and Stable Outlier-Robust Regression

论文作者

Yukawa, Masahiro, Kaneko, Hiroyuki, Suzuki, Kyohei, Yamada, Isao

论文摘要

我们提出了一个基于线性涉及的Moreau-Enhanced-Over-Spspace(Limes)模型的有效数学框架。考虑了两种具体应用:稀疏建模和鲁棒回归。流行的minimax凹入(MC)稀疏建模的罚款减去$ \ ell_1 $ norm,其Moreau Invelope,引起了几乎无偏见的估计,从而产生了显着的性能提高。为了将其扩展到不确定的线性系统,我们提出了使用投影对输入子空间的投影进行投影的minimax凹点,在该子空间中,莫罗(Moreau-Enhancement)效应仅限于保留整体凸度的子空间。我们还提出了一个新颖的概念,即稳定的异常变速回归,该回归区分噪声并明确区分异常值。 Limes模型涵盖了这两个特定示例以及其他两个应用:稳定的主组件追求和稳健的分类。该模型中涉及的石灰函数是``添加性不可分割''弱凸功能,但通过莫罗封底返回``可分离''凸功能的最小值定义。可分离性和不可分割性的这种混合性质允许将石灰模型应用于不确定的情况下,并具有有效的算法实现。两个线性/仿射操作员在模型中扮演关键角色:一个对应于上述投影,另一个对应于强大的回归/分类。研究了目标函数平滑部分的必要条件。数值示例显示了酸橙在应用中对稀疏建模和稳健回归的功效。

We present an efficient mathematical framework based on the linearly-involved Moreau-enhanced-over-subspace (LiMES) model. Two concrete applications are considered: sparse modeling and robust regression. The popular minimax concave (MC) penalty for sparse modeling subtracts, from the $\ell_1$ norm, its Moreau envelope, inducing nearly unbiased estimates and thus yielding remarkable performance enhancements. To extend it to underdetermined linear systems, we propose the projective minimax concave penalty using the projection onto the input subspace, where the Moreau-enhancement effect is restricted to the subspace for preserving the overall convexity. We also present a novel concept of stable outlier-robust regression which distinguishes noise and outlier explicitly. The LiMES model encompasses those two specific examples as well as two other applications: stable principal component pursuit and robust classification. The LiMES function involved in the model is an ``additively nonseparable'' weakly convex function but is defined with the Moreau envelope returning the minimum of a ``separable'' convex function. This mixed nature of separability and nonseparability allows an application of the LiMES model to the underdetermined case with an efficient algorithmic implementation. Two linear/affine operators play key roles in the model: one corresponds to the projection mentioned above and the other takes care of robust regression/classification. A necessary and sufficient condition for convexity of the smooth part of the objective function is studied. Numerical examples show the efficacy of LiMES in applications to sparse modeling and robust regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源