论文标题
DeepKe:基于深度学习的知识提取工具包,用于知识库人群
DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
论文作者
论文摘要
我们提出了一个开源和可扩展的知识提取工具包,以支持知识库人群中复杂的低资源,文档级别和多模式场景。 DeepKe实施了各种信息提取任务,包括指定的实体识别,关系提取和属性提取。借助统一的框架,DeepKe允许开发人员和研究人员根据其要求自定义数据集和模型从非结构化数据中提取信息。具体而言,DeepKe不仅为不同的任务和场景提供了各种功能模块和模型实现,而且还通过一致的框架来组织所有组件,以保持足够的模块化和可扩展性。我们在https://github.com/zjunlp/deepke中与Google COLAB教程和初学者的综合文档发布了源代码。此外,我们在http://deepke.openkg.cn/en/re_doc_show.html中介绍了一个在线系统,用于实时提取各种任务,以及一个演示视频。
We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.