论文标题
图形棱镜的部分统治
Partial Domination in Prisms of Graphs
论文作者
论文摘要
对于任何图G =(v,e)和比例$ p \在(0,1] $中,如果$ \ frac {| n [| n [s] |} {| v |} \ geq p $。 G $π$ g的排列$π$是从两个不连接的副本$ g_1 $和$ g_2 $ g $的$ g $中获得的,每个V中的每个V中的$ g_1 $ to $ g_1 $ to $π(v)$ in $ g_2 $ in $ g_2 $。 E(g_1)\ cup e(g_2)\ cup \ {\ {v,π(v)\}:v \ in v(g_1),π(v)\ in v(g_2)\} $ in the $ g $ ponfination $ g $ - 我们在$ pefter in propection in proments of ponefaction and proption $ g $。图形及其棱镜图,适用于$ p $的特定值。
For any graph G = (V, E) and proportion $p\in(0,1]$, a set $S\subseteq V$ is a p-dominating set if $\frac{|N[S]|}{|V|}\geq p$. The $p$-domination number $γ_{p}(G)$ equals the minimum cardinality of a $p$-dominating set in G. For a permutation $π$ of the vertex set of G, the graph $π$G is obtained from two disjoint copies $G_1$ and $G_2$ of $G$ by joining each v in $G_1$ to $π(v)$ in $G_2$. i.e., $V(πG)= V(G_1)\cup V(G_2) \text{ and } E(G)= E(G_1)\cup E(G_2)\cup \{\{v,π(v)\}: v\in V(G_1), π(v)\in V(G_2)\}$. The graph $πG$ is called the prism of $G$ with respect to $π$. In this paper, we find some relations between the domination and the $p$-domination numbers in the context of graph and its prism graph for particular values of $p$.