论文标题
适合$α-z $ bures-wasserstein量子差异的正确均值
Right mean for the $α-z$ Bures-Wasserstein quantum divergence
论文作者
论文摘要
最近引入了从$α-Z $ renyi相对熵引起的新的量子差异,最近引入了称为$α-Z $ bures-wasserstein量子差异。我们在本文中调查了正确平均值的特性,这是$α-Z $ bures-wasserstein量子差异的加权总和的独特最小化器。出现了许多有趣的矩阵功率平均值(包括卡琴平均值)的有趣的操作员不平等。此外,我们验证了用瓦斯堡平均值的痕量不平等,并为两种正确均值的Hadamard产品提供了界限。
A new quantum divergence induced from the $α-z$ Renyi relative entropy, called the $α-z$ Bures-Wasserstein quantum divergence, has been recently introduced. We investigate in this paper properties of the right mean, which is a unique minimizer of the weighted sum of $α-z$ Bures-Wasserstein quantum divergences to each points. Many interesting operator inequalities of the right mean with the matrix power mean including the Cartan mean are presented. Moreover, we verify the trace inequality with the Wasserstein mean and provide bounds for the Hadamard product of two right means.