论文标题

赢得Chalearn Autodl挑战赛的解决方案和挑战后分析2019

Winning solutions and post-challenge analyses of the ChaLearn AutoDL challenge 2019

论文作者

Liu, Zhengying, Pavao, Adrien, Xu, Zhen, Escalera, Sergio, Ferreira, Fabio, Guyon, Isabelle, Hong, Sirui, Hutter, Frank, Ji, Rongrong, Junior, Julio C. S. Jacques, Li, Ge, Lindauer, Marius, Luo, Zhipeng, Madadi, Meysam, Nierhoff, Thomas, Niu, Kangning, Pan, Chunguang, Stoll, Danny, Treguer, Sebastien, Wang, Jin, Wang, Peng, Wu, Chenglin, Xiong, Youcheng, Zela, Arbe r, Zhang, Yang

论文摘要

本文报告了查勒恩(Chalearn)的自动挑战赛系列的结果和挑战后分析,该系列有助于整理出在各种环境中引入的大量自动解决方案(DL),但缺乏公平的比较。所有输入数据模式(时间序列,图像,视频,文本,表格)均格式化为张量,所有任务都是多标签分类问题。代码提交在隐藏的任务,时间和计算资源有限的情况下执行,推动解决方案迅速获得结果。在这种情况下,尽管流行的神经体系结构搜索(NAS)是不切实际的,但DL方法占主导地位。解决方案依赖于微调的预训练网络,其体系结构匹配数据模式。挑战后测试并未揭示超出施加的时间限制的改进。尽管没有特别原始的组件或新颖的组件,但出现了一个具有“元学习者”,“ data Ingestor”,“模型选择器”,“模型/学习者”和“评估者”的高级模块化组织。这种模块化使消融研究揭示了(离平台)元学习,结合和有效的数据管理的重要性。异质模块组合的实验进一步证实了获胜溶液的(局部)最优性。我们的挑战遗产包括持久的基准(http://autodl.chalearn.org),获奖者的开源代码和免费的“自动自助服务”。

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源