论文标题

关于可压缩欧拉方程的Harten单参数家族的数字通量的注释

A Note on Numerical Fluxes Conserving a Member of Harten's One-Parameter Family of Entropies for the Compressible Euler Equations

论文作者

Ranocha, Hendrik

论文摘要

熵支撑的数值通量是保护法的现代高阶熵分离的基石。除熵保护外,其他模拟连续水平(例如压力平衡和动能能量保存)的结构特性很重要。该注释证明,没有保存的数值通量(Harten)用于可压缩的Euler方程的熵,该方程也可以保持压力平衡,并且密度通量与压力无关。这与基于物理熵的通量相反,在物理熵的情况下,即使动力学保存也可以实现。

Entropy-conserving numerical fluxes are a cornerstone of modern high-order entropy-dissipative discretizations of conservation laws. In addition to entropy conservation, other structural properties mimicking the continuous level such as pressure equilibrium and kinetic energy preservation are important. This note proves that there are no numerical fluxes conserving (one of) Harten's entropies for the compressible Euler equations that also preserve pressure equilibria and have a density flux independent of the pressure. This is in contrast to fluxes based on the physical entropy, where even kinetic energy preservation can be achieved in addition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源