论文标题
$ Q $ -Middle卷积和$ Q $-Painlevé方程
$q$-Middle Convolution and $q$-Painlevé Equation
论文作者
论文摘要
Sakai和Yamaguchi引入了中间卷积的$ Q $构成。我们将其应用于与$ Q $-PainlevéVI方程相关的线性$ Q $ -Difference方程。然后,我们获得积分转换。我们根据$ q $-painlevévi方程的仿型Weyl grout对称性进行了调查$ Q $ -Middle卷积。我们推断出$ q $ -Heun方程式的整体转换。
A $q$-deformation of the middle convolution was introduced by Sakai and Yamaguchi. We apply it to a linear $q$-difference equation associated with the $q$-Painlevé VI equation. Then we obtain integral transformations. We investigate the $q$-middle convolution in terms of the affine Weyl group symmetry of the $q$-Painlevé VI equation. We deduce an integral transformation on the $q$-Heun equation.