论文标题

图像质量测量和使用傅立叶环相关性

Image quality measurements and denoising using Fourier Ring Correlations

论文作者

Kaczmar-Michalska, J., Hajizadeh, N. R., Rzepiela, A. J., Nørrelykke, S. F.

论文摘要

图像质量是一个模糊的概念,对不同的人具有不同的含义。为了量化图像质量,相对差异通常是在损坏的图像和地面真相图像之间计算的。但是,我们应该使用什么指标来衡量这种差异?理想情况下,度量标准应为自然图像和科学图像均表现良好。结构相似性指数(SSIM)是人类如何感知图像相似性,但对显微镜科学有意义的差异敏感的很好衡量。在电子和超分辨率显微镜中,经常使用傅立叶环相关性(FRC),但在这些磁场之外鲜为人知。在这里,我们证明FRC可以很好地应用于自然图像,例如Google打开图像数据集。然后,我们根据FRC定义一个损失函数,表明它在分析上是可分析的,并使用它来训练U-net进行图像降解。与使用基于L1或L2的损失相比,这种基于FRC的损耗功能使网络可以更快地训练并获得相似或更好的结果。我们还通过FRC分析研究了神经网络denoising的属性和局限性。

Image quality is a nebulous concept with different meanings to different people. To quantify image quality a relative difference is typically calculated between a corrupted image and a ground truth image. But what metric should we use for measuring this difference? Ideally, the metric should perform well for both natural and scientific images. The structural similarity index (SSIM) is a good measure for how humans perceive image similarities, but is not sensitive to differences that are scientifically meaningful in microscopy. In electron and super-resolution microscopy, the Fourier Ring Correlation (FRC) is often used, but is little known outside of these fields. Here we show that the FRC can equally well be applied to natural images, e.g. the Google Open Images dataset. We then define a loss function based on the FRC, show that it is analytically differentiable, and use it to train a U-net for denoising of images. This FRC-based loss function allows the network to train faster and achieve similar or better results than when using L1- or L2- based losses. We also investigate the properties and limitations of neural network denoising with the FRC analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源