论文标题
有效的Lagrangian和稳定性分析在扭曲的空间中
Effective Lagrangian and stability analysis in warped space
论文作者
论文摘要
在扭曲的空间模型中,巨大的距离可以通过戈德伯格机构稳定。特别重要的是,稳定潜力要求正确识别动态自由度。在本文中,我们提供了有效拉格朗日的完整计算,直到二次订单是Randall-Sundrum型号及其$ n $ -brane $(N \ GEQ 4)$ Extensions的二次订单。通过将变异原理应用于特定的扰动场,我们得出了将重力解耦的运动和正交条件的方程。这种方法被证明等同于使用线性化的爱因斯坦方程进行分析。我们的派生阐明,在$ n $ brane设置中,辐射场的自由度是动态的,而其他模式则由量规固定剂消除。因此,我们可以以类似于RS1方案的方式将GW稳定化直接概括为$ n $ brane模型。
In the warped space model, the inter-brane distance can be stabilized by the Goldberger-Wise mechanism. Of particular importance, the stabilization potential calls for a proper identification of the dynamical degree of freedom. In this paper, we provided a complete calculation of the effective Lagrangian till the quadratic order that is generic for the Randall-Sundrum model and its $N$-brane $(N \geq 4)$ extensions. By applying the variation principle to a specific perturbation field, we derived the equations of motion and orthogonal conditions for decoupling the graviton. This approach is demonstrated to be equivalent to the analysis using the linearized Einstein equation. Our derivation clarifies that in the $N$-brane set up, just one degree of freedom for the radion field is dynamical, with the other modes eliminated by the gauge fixings. Thus we can directly generalize the GW stabilization to the $N$-brane model in a way similar to the RS1 scenario.