论文标题
在对数差分系统的单片图上
On the monodromy map for the logarithmic differential systems
论文作者
论文摘要
我们研究了对数$ \ Mathfrak G $ -Differential Systems的单型图,该系统是$ g $的定向表面$ s_0 $,$ \ mathfrak g $是一个复杂的还原元素代数$ g $ g $。 These logarithmic $\mathfrak g$-differential systems are triples of the form $(X, D,Φ)$, where $(X, D) \in {\mathcal T}_{g,d}$ is an element of the Teichmüller space of complex structures on $S_0$ with $d \geq 1$ ordered marked points $D\subset S_0= X$ and $φ$是微不足道的holomorphic principal $ g $ -bundle $ x \ times g $上的对数连接,其极性部分包含在Divisor $ d $中。我们证明,来自对数$ \ mathfrak g $ - 差异系统到$ g $ - $ g $ - 表现的$ s_0 \ setminus d $的$ g $ - 表现的$ g $呈现的单片图,是在接下来的两种情况下是一种浸入的: a)$ g \ geq 2 $,$ d \ geq 1 $和$ \ dim _ {\ mathbb c} g \ geq d+2 $; b)$ g = 1 $和$ \ dim _ {\ mathbb c} g \ geq d $。 在以下两种情况下,上面的单构图无处可浸入: 1)$ g = 0 $和$ d \ geq 4 $; 2)$ g \ geq 1 $和$ \ dim _ {\ mathbb c} g <\ frac {d+3g-3} {g} $。 这扩展到对数案例的主要结果\ cite {cdhl},\ cite {bd}处理非单明性全态$ \ mathfrak g $ -divferential Systems(与$ d \,= \,0 $相对应)。
We study the monodromy map for logarithmic $\mathfrak g$-differential systems over an oriented surface $S_0$ of genus $g$, with $\mathfrak g$ being the Lie algebra of a complex reductive affine algebraic group $G$. These logarithmic $\mathfrak g$-differential systems are triples of the form $(X, D,Φ)$, where $(X, D) \in {\mathcal T}_{g,d}$ is an element of the Teichmüller space of complex structures on $S_0$ with $d \geq 1$ ordered marked points $D\subset S_0= X$ and $Φ$ is a logarithmic connection on the trivial holomorphic principal $G$-bundle $X \times G$ over $X$ whose polar part is contained in the divisor $D$. We prove that the monodromy map from the space of logarithmic $\mathfrak g$-differential systems to the character variety of $G$-representations of the fundamental group of $S_0\setminus D$ is an immersion at the generic point, in the following two cases: A) $g \geq 2$, $d \geq 1$, and $\dim_{\mathbb C}G \geq d+2$; B) $g=1$ and $\dim_{\mathbb C}G \geq d$. The above monodromy map is nowhere an immersion in the following two cases: 1) $g=0$ and $d \geq 4$; 2) $g\geq 1$ and $\dim_{\mathbb C}G < \frac{d+3g-3}{g}$. This extends to the logarithmic case the main results in \cite{CDHL}, \cite{BD} dealing with nonsingular holomorphic $\mathfrak g$-differential systems (which corresponds to the case of $d\,=\,0$).