论文标题

$ k $ - 流畅的fano $ \ text {sl} _2 $ -threefolds

$K$-polystability of smooth Fano $\text{SL}_2$-threefolds

论文作者

Rogers, Jack

论文摘要

我们证明了所有光滑复杂的Fano三倍的$ K $ - 聚集性,他们承认有效的动作$ \ text {sl} _2 $,但不是2托或3多头。 In particular, the existence of Kähler-Einstein metrics on varieties in the families (1.10), (1.15), (1.16), (1.17), (2.21), (2.27), (2.32), (3.13), (3.17), (3.25) and (4.6) of the Mori-Mukai classification of smooth Fano threefolds is proved.

We prove the $K$-polystability of all smooth complex Fano threefolds admitting an effective action of $\text{SL}_2$ but not of a 2-torus or 3-torus. In particular, the existence of Kähler-Einstein metrics on varieties in the families (1.10), (1.15), (1.16), (1.17), (2.21), (2.27), (2.32), (3.13), (3.17), (3.25) and (4.6) of the Mori-Mukai classification of smooth Fano threefolds is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源