论文标题

频谱测量:具有自主无人机的主动无线电图估计

Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

论文作者

Shrestha, Raju, Romero, Daniel, Chepuri, Sundeep Prabhakar

论文摘要

无线电图在无线通信和移动机器人技术任务中找到了许多应用程序,包括资源分配,干涉协调和任务计划。尽管已经提出了许多技术来从空间分布的测量值中构造无线电图,但事先假定预定了此类测量的位置。相比之下,本文提出了频谱测量,其中移动机器人(例如无人驾驶汽车(UAV))会在一组积极选择的位置收集测量,以在短时间内获得高质量的地图估计值。这是通过两个步骤执行的。首先,设计了两种基于模型的在线贝叶斯估计器和一个数据驱动的深度学习算法的新算法,用于更新MAP估计值和一个不确定性指标,以指示每个可能位置的测量值的信息性。这些算法可提供互补的好处,并且每次测量都具有恒定的复杂性。其次,不确定性指标用于计划无人机的轨迹,以在最有用的位置收集测量。为了克服此问题的组合复杂性,提出了一种动态编程方法,以通过线性时间中的大型不确定性领域获取航路点的列表。在现实数据集上进行的数值实验证实,所提出的方案迅速构建了准确的无线电图。

Radio maps find numerous applications in wireless communications and mobile robotics tasks, including resource allocation, interference coordination, and mission planning. Although numerous techniques have been proposed to construct radio maps from spatially distributed measurements, the locations of such measurements are assumed predetermined beforehand. In contrast, this paper proposes spectrum surveying, where a mobile robot such as an unmanned aerial vehicle (UAV) collects measurements at a set of locations that are actively selected to obtain high-quality map estimates in a short surveying time. This is performed in two steps. First, two novel algorithms, a model-based online Bayesian estimator and a data-driven deep learning algorithm, are devised for updating a map estimate and an uncertainty metric that indicates the informativeness of measurements at each possible location. These algorithms offer complementary benefits and feature constant complexity per measurement. Second, the uncertainty metric is used to plan the trajectory of the UAV to gather measurements at the most informative locations. To overcome the combinatorial complexity of this problem, a dynamic programming approach is proposed to obtain lists of waypoints through areas of large uncertainty in linear time. Numerical experiments conducted on a realistic dataset confirm that the proposed scheme constructs accurate radio maps quickly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源