论文标题

电力系统中的集成预测维护和操作计划问题的联合机会约束随机编程方法

A Joint Chance-Constrained Stochastic Programming Approach for the Integrated Predictive Maintenance and Operations Scheduling Problem in Power Systems

论文作者

Okumusoglu, Bahar Cennet, Basciftci, Beste, Kocuk, Burak

论文摘要

维护计划在不确定性下通过帮助系统操作员确保可靠和安全的电网在不确定性下发挥关键作用。本文研究了一个基于短期条件的集成维护计划,并考虑了操作调度问题,同时考虑了发电机和传输线的意外故障可能性。我们将这个问题提出为两个阶段的随机混合企业计划,并从传感器驱动的单个系统元素的剩余终生分布中采样了故障方案,而引入了由Poisson二元随机变量组成的联合机会构成,以考虑故障风险。由于它的棘手性,我们开发了一种切削平面方法,通过提出分离子例程并得出该程序的一部分,从而通过提出分离子例程并得出更强的削减,以获得对关节机会构成的精确重新印象。为了解决大规模实例,我们得出了基于二阶锥体编程的安全近似此约束。此外,我们提出了一种基于分解的算法,该算法以并行方式实现,以解决由此产生的随机程序,通过利用整数L形方法的功能以及维护和操作调度问题的特殊结构,以得出更强大的最佳削减。我们进一步提出了超过传输线流量约束的预处理步骤,以识别冗余。为了说明与更常规的维护方法相比,我们的算法的计算性能和效率,我们设计了一项计算研究,重点是每周计划,每天进行维护和每小时的操作决策,涉及详细的单位承诺子问题。我们对各种IEEE实例的计算结果表明了拟议方法的计算效率,并具有可靠且具有成本效益的维护和操作计划。

Maintenance planning plays a key role in power system operations under uncertainty by helping system operators ensure a reliable and secure power grid. This paper studies a short-term condition-based integrated maintenance planning with operations scheduling problem while considering the unexpected failure possibilities of generators as well as transmission lines. We formulate this problem as a two-stage stochastic mixed-integer program with failure scenarios sampled from the sensor-driven remaining lifetime distributions of the individual system elements whereas a joint chance-constraint consisting of Poisson Binomial random variables is introduced to account for failure risks. Because of its intractability, we develop a cutting-plane method to obtain an exact reformulation of the joint chance-constraint by proposing a separation subroutine and deriving stronger cuts as part of this procedure. To solve large-scale instances, we derive a second-order cone programming based safe approximation of this constraint. Furthermore, we propose a decomposition-based algorithm implemented in parallel fashion for solving the resulting stochastic program, by exploiting the features of the integer L-shaped method and the special structure of the maintenance and operations scheduling problem to derive stronger optimality cuts. We further present preprocessing steps over transmission line flow constraints to identify redundancies. To illustrate the computational performance and efficiency of our algorithm compared to more conventional maintenance approaches, we design a computational study focusing on a weekly plan with daily maintenance and hourly operational decisions involving detailed unit commitment subproblems. Our computational results on various IEEE instances demonstrate the computational efficiency of the proposed approach with reliable and cost-effective maintenance and operational schedules.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源