论文标题

$ su(1,1)$对称性冷原子气的量子动态

Quantum Dynamics of Cold Atomic Gas with $SU(1,1)$ Symmetry

论文作者

Zhang, Jing, Yang, Xiaoyi, Lv, Chenwei, Ma, Shengli, Zhang, Ren

论文摘要

在量子动力学的最新进展中,我们以$ su(1,1)$对称性进行了研究。我们没有为时间依赖的哈密顿量的演化运算符执行时间订购的积分,而是表明时间演化运算符可以表示为$ su(1,1)$组元素。由于$ su(1,1)$组描述了双曲线表面上的“旋转”,因此可以在庞加莱磁盘上可视化动力学,这是上部倍增倍曲底的立体投影。例如,我们介绍了Bose-Einstein凝结的复兴以及庞加莱磁盘上的比例不变的费米气体的轨迹。进一步考虑了振荡晶格中的量子气,我们还通过时间依赖性的单粒子色散研究了系统的动力学。希望我们的结果可以在当前的实验中进行检查。

Motivated by recent advances in quantum dynamics, we investigate the dynamics of the system with $SU(1,1)$ symmetry. Instead of performing the time-ordered integral for the evolution operator of the time-dependent Hamiltonian, we show that the time evolution operator can be expressed as an $SU(1,1)$ group element. Since the $SU(1,1)$ group describes the "rotation" on a hyperbolic surface, the dynamics can be visualized on a Poincaré disk, a stereographic projection of the upper hyperboloid. As an example, we present the trajectory of the revival of Bose-Einstein condensation and that of the scale-invariant Fermi gas on the Poincaré disk. Further considering the quantum gas in the oscillating lattice, we also study the dynamics of the system with time-dependent single-particle dispersion. Our results are hopefully to be checked in current experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源