论文标题
梯度流中的一颗粒子不可约的威尔逊动作精确地归一化组形式主义
One-particle irreducible Wilson action in the gradient flow exact renormalization group formalism
论文作者
论文摘要
我们在梯度流动的精确重新归一化组(GFERG)形式主义中定义了一个不可约(1PI)的威尔逊作用,为威尔逊作用的legendre变换。我们特别考虑量子电动力学,并表明GFERG流程方程保留了\ emph {常规\/} $ u(1)$规变换下的1PI Wilson动作(不包括量规术语)的不变性。这与根据修改后的$ u(1)$量规变换的原始威尔逊动作的不变性形成鲜明对比。全局手性变换还采用了1PI Wilson动作的\ Emph {常规\/}形式。尽管GFERG流程方程的复杂性,但规格和全球手性转换的常规形式可能使我们能够引入非扰动的ANSATZ,以实现量规和手性不变的1PI Wilson动作。
We define a one-particle irreducible (1PI) Wilson action in the gradient flow exact renormalization group (GFERG) formalism as the Legendre transform of a Wilson action. We consider quantum electrodynamics in particular, and show that the GFERG flow equation preserves the invariance of the 1PI Wilson action (excluding the gauge-fixing term) under the \emph{conventional\/} $U(1)$ gauge transformation. This is in contrast to the invariance of the original Wilson action under a modified $U(1)$ gauge transformation. The global chiral transformation also takes the \emph{conventional\/} form for the 1PI Wilson action. Despite the complexity of the GFERG flow equation, the conventional form of the gauge and global chiral transformations may allow us to introduce a non-perturbative Ansatz for gauge and chiral invariant 1PI Wilson actions.