论文标题

学会识别顶级ELO评分:决斗的土匪方法

Learning to Identify Top Elo Ratings: A Dueling Bandits Approach

论文作者

Yan, Xue, Du, Yali, Ru, Binxin, Wang, Jun, Zhang, Haifeng, Chen, Xu

论文摘要

ELO评级系统被广泛采用,以评估(国际象棋)游戏和运动员的技能。最近,它也已集成到机器学习算法中,以评估计算机化AI代理的性能。但是,对ELO评级(对于顶级球员来说)的准确估算通常需要进行许多一轮比赛,这可能很昂贵。在本文中,为了提高ELO评估的样本效率(对于顶级玩家),我们提出了一种有效的在线匹配计划算法。具体来说,我们通过决斗匪徒框架识别并匹配顶级玩家,并根据ELO的基于梯度的更新量身定制土匪算法。我们表明,与需要$ o(t)$时间的传统可能性最大化方法相比,它将每个步骤的内存和时间复杂性降低到常数。我们的算法对$ \ tilde {o}(\ sqrt {t})$的遗憾保证,在竞赛巡回赛数量中进行了sublinear,并已扩展到多维ELO用于处理不太平代游戏的评分。我们从经验上证明,我们的方法在各种游戏任务上实现了卓越的收敛速度和时间效率。

The Elo rating system is widely adopted to evaluate the skills of (chess) game and sports players. Recently it has been also integrated into machine learning algorithms in evaluating the performance of computerised AI agents. However, an accurate estimation of the Elo rating (for the top players) often requires many rounds of competitions, which can be expensive to carry out. In this paper, to improve the sample efficiency of the Elo evaluation (for top players), we propose an efficient online match scheduling algorithm. Specifically, we identify and match the top players through a dueling bandits framework and tailor the bandit algorithm to the gradient-based update of Elo. We show that it reduces the per-step memory and time complexity to constant, compared to the traditional likelihood maximization approaches requiring $O(t)$ time. Our algorithm has a regret guarantee of $\tilde{O}(\sqrt{T})$, sublinear in the number of competition rounds and has been extended to the multidimensional Elo ratings for handling intransitive games. We empirically demonstrate that our method achieves superior convergence speed and time efficiency on a variety of gaming tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源