论文标题

无限空间中汉密尔顿 - 雅各比方程的奇异扰动的收敛速率

Rate of convergence for singular perturbations of Hamilton-Jacobi equations in unbounded spaces

论文作者

Ghilli, Daria, Marchi, Claudio

论文摘要

我们证明了汉密尔顿 - 雅各比方程在无限空间中的奇异扰动的收敛速率,在这些空间中,快速操作员是线性的,均匀的椭圆形,并且具有Ornstein-uhlenbeck-type漂移。慢速运算符是一个完全非线性椭圆运算符,而源项仅在快速和慢变量中仅在局部hölder连续。我们根据源术语的规律性获得了几个收敛速率。

We prove rate of convergence results for singular perturbations of Hamilton-Jacobi equations in unbounded spaces where the fast operator is linear, uniformly elliptic and has an Ornstein-Uhlenbeck-type drift. The slow operator is a fully nonlinear elliptic operator while the source term is assumed only locally Hölder continuous in both fast and slow variables. We obtain several rates of convergence according on the regularity of the source term.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源