论文标题

基于深度学习的链接配置,用于雷达辅助多源MMWave车辆到基础结构通信

Deep Learning-based Link Configuration for Radar-aided Multiuser mmWave Vehicle-to-Infrastructure Communication

论文作者

Graff, Andrew, Chen, Yun, González-Prelcic, Nuria, Shimizu, Takayuki

论文摘要

正如当前的蜂窝标准中提出的那样,在传统的梁训练方案下配置毫米波链路,引入了大型通信开销,在车辆系统中特别相关,在车辆系统中,通道是高度动态的。在本文中,我们建议使用一个被动雷达阵列来感知来自道路上多辆汽车的汽车雷达传输,以及一个雷达处理链,提供有关减少候选候选梁的信息,以了解路线基础设施之间的链接和每辆车之间的链接。梁训练方案以后可以利用此先前的信息,以大大减少开销。雷达处理链估计了雷达信号的时序和呼叫速率,通过滤除干扰雷达鸣叫来隔离单个信号,并估计每个单独的雷达传输的空间协方差。然后,通过在视线和非视线设置中学习雷达和通信渠道之间的复杂映射,将深层网络用于将这些雷达空间协方差的特征转化为通信空间协方差的特征。将这种方法的通信速率和中断概率与详尽的搜索和纯雷达辅助梁训练方法(没有深度学习的映射)进行了比较,并在通过射线跟踪模拟的多用户通道上进行了评估。结果表明:(i)所提出的加工链可以可靠地隔离单个雷达的空间协方差,以及(ii)基于深度学习的雷达转换翻译策略,可以对LOS和NLOS通道中的纯雷达辅助方法产生重大改进。

Configuring millimeter wave links following a conventional beam training protocol, as the one proposed in the current cellular standard, introduces a large communication overhead, specially relevant in vehicular systems, where the channels are highly dynamic. In this paper, we propose the use of a passive radar array to sense automotive radar transmissions coming from multiple vehicles on the road, and a radar processing chain that provides information about a reduced set of candidate beams for the links between the road-infrastructure and each one of the vehicles. This prior information can be later leveraged by the beam training protocol to significantly reduce overhead. The radar processing chain estimates both the timing and chirp rates of the radar signals, isolates the individual signals by filtering out interfering radar chirps, and estimates the spatial covariance of each individual radar transmission. Then, a deep network is used to translate features of these radar spatial covariances into features of the communication spatial covariances, by learning the intricate mapping between radar and communication channels, in both line-of-sight and non-line-of-sight settings. The communication rates and outage probabilities of this approach are compared against exhaustive search and pure radar-aided beam training methods (without deep learning-based mapping), and evaluated on multi-user channels simulated by ray tracing. Results show that: (i) the proposed processing chain can reliably isolate the spatial covariances for individual radars, and (ii) the radar-to-communications translation strategy based on deep learning provides a significant improvement over pure radar-aided methods in both LOS and NLOS channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源