论文标题
凝结物质系统中相互作用的Weyl费物的相对论视野
Relativistic horizon of interacting Weyl fermions in condensed matter systems
论文作者
论文摘要
拓扑,几何形状和强相关性的交叉点为凝聚态物质系统中出现了许多异国情调阶段的机会。特别是Weyl Fermions为探索在相互作用下探索单粒子物理的动态不稳定性提供了理想的平台。尽管在相对论领域理论中具有基本作用,但与量子物质中的weyl fermionic激发相互作用尚未考虑因果关系和相关的时空光锥和事件范围的概念。在这里,通过使用电荷密度波(CDW)为例,我们揭示了相互作用的Weyl fermions的行为,并表明系统中的Weyl fermion可以通过仅与其能量摩amentum分散锥中的其他Weyl fermions相互作用来打开带隙。从这个意义上讲,仅在重叠的分散锥中才有可能发生因果关系或相互作用,因此每个分散锥构成了高能物理学更常规的“事件范围”的固态类似物。我们的研究提供了一个通用框架,可以通过将它们分离成类似于能量和动量的关系,以类似于高能物理学中的时间样和类似太空的事件,从而考虑了相对论的准粒子的相互作用。最后,我们考虑了两种不同的候选材料,用于托管Weyl CDW阶段:( tase $ _4 $)$ _ 2 $ i和mo $ $ _3 $ al $ _2 $ c。我们的研究极大地丰富了现象学,并揭示了冷凝物质与高能物理学之间的新联系。
The intersections of topology, geometry and strong correlations offer many opportunities for exotic quantum phases to emerge in condensed matter systems. Weyl fermions, in particular, provide an ideal platform for exploring the dynamical instabilities of single-particle physics under interactions. Despite its fundamental role in relativistic field theory, the concept of causality and the associated spacetime light cone and event horizon has not been considered in connection with interacting Weyl fermionic excitations in quantum matter. Here, by using charge-density wave (CDW) as an example, we unveil the behavior of interacting Weyl fermions and show that a Weyl fermion in a system can open a band gap by interacting only with other Weyl fermions that lie within its energy-momentum dispersion cone. In this sense, causal connections or interactions are only possible within overlapping dispersion cones and each dispersion cone thus constitutes a solid-state analogue of the more conventional `event horizon' of high-energy physics. Our study provides a universal framework for considering interacting relativistic quasiparticles in condensed matter by separating them into energy-like and momentum-like relationships in analogy with the time-like and space-like events in high-energy physics. Finally, we consider two different candidate materials for hosting the Weyl CDW phase: (TaSe$_4$)$_2$I and Mo$_3$Al$_2$C. Our study greatly enriches the phenomenology and unveils new connections between condensed matter and high-energy physics.