论文标题

Ryser的定理,用于$ρ$ -LATIN矩形

Ryser's Theorem for $ρ$-latin Rectangles

论文作者

Bahmanian, Amin

论文摘要

令$ l $为$ n \ times n $阵列,其顶部剩下的$ r \ times s $子阵列充满了$ k $不同的符号,每个符号最多一次发生在每一行,每列最多一次。我们发现必要且充分的条件,以确保$ L $的其余单元可以填充,以使每个符号最多一次在每一行,最多一次,每列最多一次,并且每个符号在$ L $中发生一个规定的次数。每个符号发生的规定次数为$ n $的情况是由Ryser(Proc。Amer。Math。Soc。2(1951),550--552)解决的,Case $ S = N $由Goldwasser等人解决。 (J. Combin。理论Ser。A130(2015),26--41)。我们的技术导致了后者的简短证明。

Let $L$ be an $n\times n$ array whose top left $r\times s$ subarray is filled with $k$ different symbols, each occurring at most once in each row and at most once in each column. We find necessary and sufficient conditions that ensure the remaining cells of $L$ can be filled such that each symbol occurs at most once in each row and at most once in each column, and each symbol occurs a prescribed number of times in $L$. The case where the prescribed number of times each symbol occurs is $n$ was solved by Ryser (Proc. Amer. Math. Soc. 2 (1951), 550--552), and the case $s=n$ was settled by Goldwasser et al. (J. Combin. Theory Ser. A 130 (2015), 26--41). Our technique leads to a very short proof of the latter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源