论文标题
迈向现实世界的量子网络:评论
Towards real-world quantum networks: a review
论文作者
论文摘要
量子网络在量子信息科学中起着极为重要的作用,并应用于量子通信,计算,计量和基本测试。实现量子网络的关键挑战之一是将纠缠的飞行量子比分配给空间分离的节点,在该节点上,量子接口或传感器将纠缠范围映射到固定量子尺。分离的节点处的固定量子位构成物质中实现的量子记忆,而飞行量子位则构成了在光子中实现的量子通道。全球二十多年的敬业努力导致了纠缠量子节点并最终建立全球量子网络的重大理论和实验进步。在这里,我们回顾了量子网络的发展以及过去二十年来的实验进步,导致艺术的现状,以产生基于各种物理系统(如单个原子,冷原子合奏,被困的离子,钻石,带有氮气量中心,固定势型的固定效率)等各种物理系统等各种物理系统的量子节点的纠缠,以及在这些智障中的范围等。量子网络。
Quantum networks play an extremely important role in quantum information science, with application to quantum communication, computation, metrology and fundamental tests. One of the key challenges for implementing a quantum network is to distribute entangled flying qubits to spatially separated nodes, at which quantum interfaces or transducers map the entanglement onto stationary qubits. The stationary qubits at the separated nodes constitute quantum memories realized in matter while the flying qubits constitute quantum channels realized in photons. Dedicated efforts around the world for more than twenty years have resulted in both major theoretical and experimental progress towards entangling quantum nodes and ultimately building a global quantum network. Here, we review the development of quantum networks and the experimental progress over the past two decades leading to the current state of the art for generating entanglement of quantum nodes based on various physical systems such as single atoms, cold atomic ensembles, trapped ions, diamonds with Nitrogen-Vacancy centers, solid-state host doped with rare-earth ions, etc. Along the way we discuss the merits and compare the potential of each of these systems towards realizing a quantum network.