论文标题
多变量时间序列预测的多尺度自适应图神经网络
Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting
论文作者
论文摘要
多元时间序列(MTS)预测在智能应用程序的自动化和优化中起着重要作用。这是一项具有挑战性的任务,因为我们需要考虑复杂的可变性依赖项和可变依赖性。现有作品仅在单个可变依赖性的帮助下学习时间模式。但是,许多现实世界中有多尺度的时间模式。单个可变依赖性使模型更喜欢学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图神经网络(MAGNN)来解决上述问题。 Magnn利用多尺度的金字塔网络来保留不同时间尺度的基本时间依赖性。由于在不同的时间尺度下,可变量的依赖关系可能不同,因此自适应图学习模块旨在推断没有预定剂先验的特定比例特定的可变量依赖项。给定多尺度特征表示和特定于比例的间变化依赖性,将多尺度的时间图神经网络引入了共同模型内部可变性依赖项和可变量间依赖关系。之后,我们开发了一个按比例融合模块,以有效地促进不同时间尺度的协作,并自动捕获贡献时间模式的重要性。在四个现实世界数据集上的实验表明,Magnn的表现优于各种设置的最新方法。
Multivariate time series (MTS) forecasting plays an important role in the automation and optimization of intelligent applications. It is a challenging task, as we need to consider both complex intra-variable dependencies and inter-variable dependencies. Existing works only learn temporal patterns with the help of single inter-variable dependencies. However, there are multi-scale temporal patterns in many real-world MTS. Single inter-variable dependencies make the model prefer to learn one type of prominent and shared temporal patterns. In this paper, we propose a multi-scale adaptive graph neural network (MAGNN) to address the above issue. MAGNN exploits a multi-scale pyramid network to preserve the underlying temporal dependencies at different time scales. Since the inter-variable dependencies may be different under distinct time scales, an adaptive graph learning module is designed to infer the scale-specific inter-variable dependencies without pre-defined priors. Given the multi-scale feature representations and scale-specific inter-variable dependencies, a multi-scale temporal graph neural network is introduced to jointly model intra-variable dependencies and inter-variable dependencies. After that, we develop a scale-wise fusion module to effectively promote the collaboration across different time scales, and automatically capture the importance of contributed temporal patterns. Experiments on four real-world datasets demonstrate that MAGNN outperforms the state-of-the-art methods across various settings.