论文标题
在仿射空间的商上的圆环动作
Torus Actions on Quotients of Affine Spaces
论文作者
论文摘要
我们通过还线性起作用的还原复合物代数基团研究了复杂矢量空间的git商的固定点的座位。我们表明,在假设$ g $在稳定基因座上自由作用的假设,固定点基因座的组件再次是Levi子组的线性子空间的GIT商。
We study the locus of fixed points of a torus action on a GIT quotient of a complex vector space by a reductive complex algebraic group which acts linearly. We show that, under the assumption that $G$ acts freely on the stable locus, the components of the fixed point locus are again GIT quotients of linear subspaces by Levi subgroups.