论文标题
二维Finsler Tori的等肌明学不平等现象
Isosystolic inequalities on two-dimensional Finsler tori
论文作者
论文摘要
在本文中,我们调查了所有已知的最佳同学不平等现象,涉及以下芬斯勒地区的以下两个核心概念:Busemann-Hausdorff地区和Holmes-Thompson地区。我们还通过建立Burago和Ivanov先前工作的以下新的最佳同学不平等来完成全景:Finsler可逆的$ 2 $ 2 $ -Torus带有单位基质的Busemann-Hausdorff区域至少等于$π/4 $。
In this article we survey all known optimal isosystolic inequalities on two-dimensional Finsler tori involving the following two central notions of Finsler area: the Busemann-Hausdorff area and the Holmes-Thompson area. We also complete the panorama by establishing the following new optimal isosystolic inequality that is deduced from prior work by Burago and Ivanov: the Busemann-Hausdorff area of a Finsler reversible $2$-torus with unit systole is at least equal to $π/4$.