论文标题
重新审视的Bepicolombo太阳能连接实验
The BepiColombo solar conjunction experiments revisited
论文作者
论文摘要
Bepicolombo Esa/Jaxa任务目前正处于汞的7年巡航阶段。汞轨道射线科学实验(More)是该任务的16项实验之一,将在2021年3月的上级太阳连接(SSC)期间开始其科学研究,并测试一般相对论(GR)。在巡航阶段将遵循其他太阳能连接,提供了一些机会来改善第一个实验的结果。更多的无线电跟踪系统几乎可以在所有太阳伸长角度(最高7-8太阳半径)建立精确的范围和多普勒测量值,从而提供了准确测量相对论时间延迟和SSC期间无线电信号经历的频率变化。实验的最终目标是将GR作为重力理论的准确性置于弱场极限中。与所有重力实验一样,作用在航天器上的非重力加速度是一个主要问题。由于靠近太阳,航天器将经历严重的太阳辐射加速度,并且太阳辐照度随机波动的影响可能成为航天器自助餐的重要来源。在本文中,我们通过在动力学模型中包括在太阳辐照度中随机变化的影响,解决了Bepicolombo SSC实验结果的现实估计问题的问题。我们提出了一种数值方法,以减轻可变太阳辐射压力对实验结果的影响。我们的模拟表明,对于太阳活动和观察覆盖范围的不同假设,可以在$γ$估计范围内估计$ [6,13] \ cdot10^{ - 6} $的准确性。
BepiColombo ESA/JAXA mission is currently in its 7 year cruise phase towards Mercury. The Mercury orbiter radioscience experiment (MORE), one of the 16 experiments of the mission, will start its scientific investigation during the superior solar conjunction (SSC) in March 2021 with a test of general relativity (GR). Other solar conjunctions will follow during the cruise phase, providing several opportunities to improve the results of the first experiment. MORE radio tracking system allows to establish precise ranging and Doppler measurements almost at all solar elongation angles (up to 7-8 solar radii), thus providing an accurate measurement of the relativistic time delay and frequency shift experienced by a radio signal during an SSC. The final objective of the experiment is to place new limits to the accuracy of the GR as a theory of gravity in the weak-field limit. As in all gravity experiments, non-gravitational accelerations acting on the spacecraft are a major concern. Because of the proximity to the Sun, the spacecraft will undergo severe solar radiation pressure acceleration, and the effect of the random fluctuations of the solar irradiance may become a significant source of spacecraft buffeting. In this paper we address the problem of a realistic estimate of the outcome of the SSC experiments of BepiColombo, by including in the dynamical model the effects of random variations in the solar irradiance. We propose a numerical method to mitigate the impact of the variable solar radiation pressure on the outcome of the experiment. Our simulations show that, with different assumptions on the solar activity and observation coverage, the accuracy attainable in the estimation of $γ$ lays in the range $[6, 13]\cdot10^{-6}$.