论文标题

在线模型中的基数约束计划

Cardinality Constrained Scheduling in Online Models

论文作者

Epstein, Leah, Lassota, Alexandra, Levin, Asaf, Maack, Marten, Rohwedder, Lars

论文摘要

在平行相同机器上,MakePAN最小化是一个经典且深入研究的问题,也是在线算法分析的经典示例,该算法是Graham的著名列表调度算法,可追溯到1960年代。在此问题中,作业到达列表并到达后,算法需要将作业分配给机器。目标是最大程度地减少MakePan,即最大机器负载。在本文中,我们认为具有附加基础性约束的变体:该算法最多可能会为每台机器分配$ k $,其中$ k $是输入的一部分。虽然对基数限制的计划的离线(强烈NP)变体得到了充分的了解,并且在这里存在EPTA,但在线变体中尚无闻名的结果。我们通过对各种不同的在线模型进行全面研究来填补这一空白。首先,我们证明该问题存在持续的竞争算法,然后在任何在线算法的竞争比率上呈现出$ 2 $的下限。在下限的动机中,我们考虑了一个半对线的变体,在大小$ p $的工作中,我们被允许迁移总规模的工作,最多最多恒定时间$ p $。该常数称为算法的迁移因子。具有较小迁移因素的算法是弥合在线算法和离线算法的性能的常见方法。可以通过舍入每个传入作业的大小,然后将序数算法应用于所得的圆形实例,从而获得具有恒定迁移因子的算法。考虑到这一点,我们还考虑了序数算法的框架,并表征了可以使用上述方法实现的竞争比率。

Makespan minimization on parallel identical machines is a classical and intensively studied problem in scheduling, and a classic example for online algorithm analysis with Graham's famous list scheduling algorithm dating back to the 1960s. In this problem, jobs arrive over a list and upon an arrival, the algorithm needs to assign the job to a machine. The goal is to minimize the makespan, that is, the maximum machine load. In this paper, we consider the variant with an additional cardinality constraint: The algorithm may assign at most $k$ jobs to each machine where $k$ is part of the input. While the offline (strongly NP-hard) variant of cardinality constrained scheduling is well understood and an EPTAS exists here, no non-trivial results are known for the online variant. We fill this gap by making a comprehensive study of various different online models. First, we show that there is a constant competitive algorithm for the problem and further, present a lower bound of $2$ on the competitive ratio of any online algorithm. Motivated by the lower bound, we consider a semi-online variant where upon arrival of a job of size $p$, we are allowed to migrate jobs of total size at most a constant times $p$. This constant is called the migration factor of the algorithm. Algorithms with small migration factors are a common approach to bridge the performance of online algorithms and offline algorithms. One can obtain algorithms with a constant migration factor by rounding the size of each incoming job and then applying an ordinal algorithm to the resulting rounded instance. With this in mind, we also consider the framework of ordinal algorithms and characterize the competitive ratio that can be achieved using the aforementioned approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源