论文标题
一种新的机制,用于探测普朗克量表,并在一般分布之后探测波袋
A novel mechanism for probing the Planck scale with wavepackets following general distributions
论文作者
论文摘要
最近还显示,GUP可以预测自由移动的高斯原子和分子波袋的潜在可测量的校正,具有三个参数的有利组合,例如{\ it ef。但是,众所周知,这样的波袋可以带有各种形状,与各种分布相对应。在本文中,我们将早期的工作概括为{\ it任意分布},从而适应了波袋的任何形状。从数学上讲,我们通过利用量子和统计力学之间的二元性来构建这种形式主义,通过这种二元性,可以通过双重统计描述的特征功能的衍生物来表达动量运算符的(量子力学)期望值。配备了这个结果,我们迈进了一步,并在数字上研究了一些物理分布。我们发现,具有参数$κ= 0.5 $的广义正态分布之后大的有机(TPPF152)波袋提供了最佳的场景之一,可以通过当前技术有效地扫描整个GUP参数空间。尽管我们没有说最小长度必须靠近或达到普朗克的价值,但我们会改善以前的研究,以扫描最小长度签名,低于普朗克值的一百倍。
It was also shown recently that GUP predicts potentially measurable corrections to the `doubling time' of freely moving Gaussian atomic and molecular wavepackets with a favorable combination of three parameters, {\it e.g.} mass, initial width and mean velocity of a travelling wavepacket. However, it is well known that such wavepackets can come with various shapes which correspond to variety of distributions. In this article, we generalize our earlier work for an {\it arbitrary distribution} and thereby accommodate any shape of the wavepacket. Mathematically, we build this formalism by exploiting a duality between quantum and statistical mechanics, by which (quantum mechanical) expectation values of the momentum operator can be expressed in terms of the derivatives of the characteristic functions of the dual statistical description. Equipped with this result, we go one step further and numerically study a few physical distributions. We find that large organic (TPPF152) wavepacket following the generalized normal distribution with parameter $κ=0.5$ offers one of the best-case scenarios, effectively scanning the whole GUP parameter space with current technologies. Although we do not say that the minimal length has to be near or at the Planck value, we mange improving our previous studies to scan the minimal length signatures down to hundred times the Planck value.