论文标题
基于学习的MIMO渠道估计在频谱有效的试点分配和反馈下
Learning-Based MIMO Channel Estimation under Spectrum Efficient Pilot Allocation and Feedback
论文作者
论文摘要
使用大量MIMO收发器的无线链接对于下一代无线通信网络至关重要。大规模MIMO传输中的预编码需要准确的下行链路通道状态信息(CSI)。许多最近的作品有效地应用了深度学习(DL),以共同训练UE侧压缩网络,以延迟域CSI和BS侧解码方案。这些作品在实质上假定UE的完整延迟域CSI可用,但实际上,UE必须根据有限数量的频域飞行员来估算延迟域。在这项工作中,我们提出了一个线性飞行员到延迟(P2D)估计器,该估计值将稀疏的频率飞行员转换为截断的延迟CSI。我们表明,在频率下采样下,P2D估计器是准确的,并且我们证明了P2D估计值可以通过现有基于自动编码器的CSI估计网络有效地利用。除了考虑基于下行链接CSI的基于试验的估计值外,我们还将展开的优化网络模拟迭代解决方案以压缩传感(CS),并且与以前的基于自动验证器的DL网络相比,我们证明了更好的估计性能。最后,我们研究了可训练的CS网络在差分编码网络中的疗效,以进行时变CSI估计,并提出了一个新的网络MarkovNet-ASTA-ENET,该网络由CS网络组成,由CS网络组成,用于初始CSI估计和多个自动编码器,以估算误差项。我们证明,与仅由一种类型的网络组成的网络相比,该异质网络具有更好的渐近性能。
Wireless links using massive MIMO transceivers are vital for next generation wireless communications networks networks. Precoding in Massive MIMO transmission requires accurate downlink channel state information (CSI). Many recent works have effectively applied deep learning (DL) to jointly train UE-side compression networks for delay domain CSI and a BS-side decoding scheme. Vitally, these works assume that the full delay domain CSI is available at the UE, but in reality, the UE must estimate the delay domain based on a limited number of frequency domain pilots. In this work, we propose a linear pilot-to-delay (P2D) estimator that transforms sparse frequency pilots to the truncated delay CSI. We show that the P2D estimator is accurate under frequency downsampling, and we demonstrate that the P2D estimate can be effectively utilized with existing autoencoder-based CSI estimation networks. In addition to accounting for pilot-based estimates of downlink CSI, we apply unrolled optimization networks to emulate iterative solutions to compressed sensing (CS), and we demonstrate better estimation performance than prior autoencoder-based DL networks. Finally, we investigate the efficacy of trainable CS networks for in a differential encoding network for time-varying CSI estimation, and we propose a new network, MarkovNet-ISTA-ENet, comprised of both a CS network for initial CSI estimation and multiple autoencoders to estimate the error terms. We demonstrate that this heterogeneous network has better asymptotic performance than networks comprised of only one type of network.