论文标题

分散媒体中的加利利转化的孤子和超脑生成

Galilean-transformed solitons and supercontinuum generation in dispersive media

论文作者

He, Yuchen, Ducrozet, Guillaume, Hoffmann, Norbert, Dudley, John M., Chabchoub, Amin

论文摘要

Galilean转换是连接动力系统坐标的通用操作,该动力系统以恒定的速度相对移动。在通用非线性schrödinger方程(NLSE)的精确溶液的背景下,诱导伽利亚速度(GV)的脉冲涉及频移以满足波动方程的对称性。因此,伽利略转化被认为不适用于非线性分散介质中的波群。在本文中,我们证明了在波罐中产生的伽利略转化的包膜,而圆锥体则显示出与它们在水面上各自的纯动力学的明显变化。偏差的类型取决于GV的符号,可以由修改后的NLSE或Euler方程捕获。此外,我们表明阳性伽利亚翻译的包膜孤子脉冲表现出自调节。虽然指定的GS和波浪陡度促进了多苏龙动力学,但这种高阶相干波的强烈关注不可避免地会导致Soliton裂变的产生。我们预计,在其他非线性管辖的其他分散波指南中可能会实施类似的实验和数值研究。

The Galilean transformation is a universal operation connecting the coordinates of a dynamical system, which move relative to each other with a constant speed. In the context of exact solutions of the universal nonlinear Schrödinger equation (NLSE), inducing a Galilean velocity (GV) to the pulse involves a frequency shift to satisfy the symmetry of the wave equation. As such, the Galilean transformation has been deemed to be not applicable to wave groups in nonlinear dispersive media. In this paper, we demonstrate that in a wave tank generated Galilean transformed envelope and Peregrine solitons show clear variations from their respective pure dynamics on the water surface. The type of deviations depends on the sign of the GV and can be captured by the modified NLSE or the Euler equations. Moreover, we show that positive Galilean-translated envelope soliton pulses exhibit self-modulation. While designated GS and wave steepness values expedite multi-soliton dynamics, the strong focusing of such higher-order coherent waves inevitably lead to the generation of supercontinua as a result of soliton fission. We anticipate that kindred experimental and numerical studies might be implemented in other dispersive wave guides governed by nonlinearity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源