论文标题
通过大偏差的完整图上的随机群集模型
The random cluster model on the complete graph via large deviations
论文作者
论文摘要
我们研究了完整图上的随机群集模型中巨型成分的出现,该图是由Bollobás,Grimmett和Janson首先研究的。我们使用Biskup,Chayes和Smith引入的热力学/大偏差方法进行替代分析,以进行渗透。特别是,我们计算以$ q \ geq 1 $的最大连接组件大小的大偏差的速率函数。
We study the emergence of the giant component in the random cluster model on the complete graph, which was first studied by Bollobás, Grimmett, and Janson. We give an alternative analysis using a thermodynamic/large deviations approach introduced by Biskup, Chayes, and Smith for the case of percolation. In particular, we compute the rate function for large deviations of the size of the largest connected component of the random graph for $q\geq 1$.