论文标题

与互动效应的元回归的稳健置信区间

Robust Confidence Intervals for Meta-Regression with Interaction Effects

论文作者

Welz, Thilo, Knop, Eric S., Friede, Tim, Pauly, Markus

论文摘要

荟萃分析是一项重要的统计技术,用于综合有关相同或密切相关的研究问题的多项研究结果。所谓的元回归通过考虑研究级别协变量扩展了荟萃分析模型。混合效应的元回归模型通过适当考虑贝特威姆研究异质性,为证据综合提供了强大的工具。实际上,根据随机效应和主持人对研究效果进行建模不仅允许检查主持人的影响,而且通常会导致对所涉及参数的更准确的估计。然而,由于经常对特定研究主题的研究少数研究,元回归中通常会忽略相互作用。在这项工作中,我们考虑了研究问题(i)主持人相互作用如何影响混合效应元回归模型的推论以及(ii)某些推论方法是否比其他推论更可靠。在这里,我们回顾了包括相互作用效应在内的元回归模型中置信区间的强大方法。这些方法基于强大的三明治估计量在估计模型系数向量的方差协方差矩阵中的应用。此外,我们在广泛的仿真研究中比较了这些可靠的估计量的不同版本。因此,我们研究了不同条件下的七个不同置信区间的覆盖范围和长度。我们以一些实用的建议结束。

Meta-analysis is an important statistical technique for synthesizing the results of multiple studies regarding the same or closely related research question. So-called meta-regression extends meta-analysis models by accounting for studylevel covariates. Mixed-effects meta-regression models provide a powerful tool for evidence synthesis, by appropriately accounting for betweem-study heterogeneity. In fact, modelling the study effect in terms of random effects and moderators not only allows to examine the impact of the moderators, but often leads to more accurate estimates of the involved parameters. Nevertheless, due to the often small number of studies on a specific research topic, interactions are often neglected in meta-regression. In this work, we consider the research questions (i) how moderator interactions influence inference in mixed-effects meta-regression models and (ii) whether some inference methods are more reliable than others. Here, we review robust methods for confidence intervals in meta-regression models including interaction effects. These methods are based on the application of robust sandwich estimators for estimating the variance-covariance matrix of the vector of model coefficients. Furthermore, we compare different versions of these robust estimators in an extensive simulation study. We thereby investigate coverage and length of seven different confidence intervals under varying conditions. We conclude with some practical recommendations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源