论文标题

在非结构化环境中的UGV-uav对象地理位置

UGV-UAV Object Geolocation in Unstructured Environments

论文作者

Guttendorf, David, Hamilton, D. W. Wilson, Heckman, Anne Harris, Herman, Herman, Jonathan, Felix, Kannappan, Prasanna, Mireles, Nicholas, Navarro-Serment, Luis, Oh, Jean, Pu, Wei, Saxena, Rohan, Schneider, Jeff, Schnur, Matt, Tiernan, Carter, Tabor, Trenton

论文摘要

多个无人接地车辆(UGV)和无人机(UAV)的机器人系统具有推进自主对象地理位置性能的潜力。许多研究集中在对单个组件(例如导航,运动计划和感知)上的算法改进上。在本文中,我们提出了一个UGV-UAV对象检测和地理位置系统,该系统在非结构化环境中在实际规模上执行感知,导航和计划。我们设计了具有多光谱(可见的,近红外,热的),高分辨率(181.6 Mega Pixels),立体声(近红外对),广阔视野(192度HFOV)阵列的新型传感器吊舱。我们开发了一种新颖的板载软件硬件体系结构,以实时处理高音量传感器数据,并建立了一个定制的AI子系统,该系统由检测,跟踪,导航和计划实时地理位置组成。 这项研究是这种高速数据处理能力的第一个真实规模演示。我们新颖的模块化传感器吊舱可以增强相关的计算机视觉和机器学习研究。我们的新型硬件软件体系结构是系统级和组件级研究的坚实基础。我们的系统通过数据驱动的离线测试以及在非结构化环境中的一系列现场测试进行验证。我们提出定量结果以及有关关键机器人系统级别挑战的讨论,这些挑战在我们构建和测试系统时表现出来。该系统是将来迈向UGV-UAV合作侦察系统的第一步。

A robotic system of multiple unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) has the potential for advancing autonomous object geolocation performance. Much research has focused on algorithmic improvements on individual components, such as navigation, motion planning, and perception. In this paper, we present a UGV-UAV object detection and geolocation system, which performs perception, navigation, and planning autonomously in real scale in unstructured environment. We designed novel sensor pods equipped with multispectral (visible, near-infrared, thermal), high resolution (181.6 Mega Pixels), stereo (near-infrared pair), wide field of view (192 degree HFOV) array. We developed a novel on-board software-hardware architecture to process the high volume sensor data in real-time, and we built a custom AI subsystem composed of detection, tracking, navigation, and planning for autonomous objects geolocation in real-time. This research is the first real scale demonstration of such high speed data processing capability. Our novel modular sensor pod can boost relevant computer vision and machine learning research. Our novel hardware-software architecture is a solid foundation for system-level and component-level research. Our system is validated through data-driven offline tests as well as a series of field tests in unstructured environments. We present quantitative results as well as discussions on key robotic system level challenges which manifest when we build and test the system. This system is the first step toward a UGV-UAV cooperative reconnaissance system in the future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源