论文标题

乐团:通过策划的智能在公开赛中进行的网络自动化

OrchestRAN: Network Automation through Orchestrated Intelligence in the Open RAN

论文作者

D'Oro, Salvatore, Bonati, Leonardo, Polese, Michele, Melodia, Tommaso

论文摘要

下一代的蜂窝网络将以软焊接,开放和分解的体系结构的特征,以揭示分析和控制旋钮以实现网络智能。但是,如何意识到这一愿景在很大程度上是一个开放的问题。在本文中,我们通过展示和原型乐团迈出了决定性的一步,这是一个新颖的编排框架,它包含并建立在公开的跑步范式上,以为这些挑战提供实用的解决方案。乐团的设计旨在在非实时RAN智能控制器(RIC)中执行,并允许网络运营商(NOS)指定高级控制/推理目标(即适应计划,以及在纽约市中心一组基地站点的近实时时间的预测容量)。乐团会自动计算最佳数据驱动算法及其执行位置,以实现NOS指定的意图,同时满足所需的时序要求。我们表明,在Open Ran中精心策略的问题是NP-HARD,并且设计低复杂的解决方案以支持现实世界中的应用程序。我们原型管弦乐队并在罗马竞技场上大规模测试。我们在具有7个基站的网络上的实验结果,42位用户表明,乐团能够按需实例化数据驱动的服务,而最小的控制开销和延迟。

The next generation of cellular networks will be characterized by softwarized, open, and disaggregated architectures exposing analytics and control knobs to enable network intelligence. How to realize this vision, however, is largely an open problem. In this paper, we take a decisive step forward by presenting and prototyping OrchestRAN, a novel orchestration framework that embraces and builds upon the Open RAN paradigm to provide a practical solution to these challenges. OrchestRAN has been designed to execute in the non-real-time RAN Intelligent Controller (RIC) and allows Network Operators (NOs) to specify high-level control/inference objectives (i.e., adapt scheduling, and forecast capacity in near-real-time for a set of base stations in Downtown New York). OrchestRAN automatically computes the optimal set of data-driven algorithms and their execution location to achieve intents specified by the NOs while meeting the desired timing requirements. We show that the problem of orchestrating intelligence in Open RAN is NP-hard, and design low-complexity solutions to support real-world applications. We prototype OrchestRAN and test it at scale on Colosseum. Our experimental results on a network with 7 base stations and 42 users demonstrate that OrchestRAN is able to instantiate data-driven services on demand with minimal control overhead and latency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源