论文标题

光子学量子状态工程过程的动态学习

Dynamical learning of a photonics quantum-state engineering process

论文作者

Suprano, Alessia, Zia, Danilo, Polino, Emanuele, Giordani, Taira, Innocenti, Luca, Ferraro, Alessandro, Paternostro, Mauro, Spagnolo, Nicolò, Sciarrino, Fabio

论文摘要

实验工程高维量子状态是几种量子信息协议的至关重要任务。但是,需要在实验噪声设备的表征上进行高度的精确度才能应用现有的量子状态工程协议。在实际情况下,这通常缺乏影响工程状态的质量。在这里,我们通过实验实施了一种自动化自适应优化方案,以对工程师光子轨道角动量(OAM)状态实施。该协议给定目标输出状态,在线估计当前生产的状态的质量,依靠输出测量统计数据,并确定如何调整实验参数以优化状态生成。为了实现这一目标,算法不需要对一代设备本身的描述进行描述。相反,它在完全黑盒子的情况下运行,使该计划适用于各种情况。由算法控制的手柄是一系列波动板的旋转角度,可用于概率地产生任意的四维OAM状态。我们在经典和量子制度的不同目标状态上展示了我们的方案,并证明了其对控制参数的外部扰动的稳健性。这种方法代表了量子信息协议和技术的嘈杂实验任务的自动优化的强大工具。

Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols. However, a high degree of precision in the characterization of experimental noisy apparatus is required to apply existing quantum state engineering protocols. This is often lacking in practical scenarios, affecting the quality of the engineered states. Here, we implement experimentally an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states. The protocol, given a target output state, performs an online estimation of the quality of the currently produced states, relying on output measurement statistics, and determines how to tune the experimental parameters to optimize the state generation. To achieve this, the algorithm needs not be imbued with a description of the generation apparatus itself. Rather, it operates in a fully black-box scenario, making the scheme applicable in a wide variety of circumstances. The handles controlled by the algorithm are the rotation angles of a series of waveplates and can be used to probabilistically generate arbitrary four-dimensional OAM states. We showcase our scheme on different target states both in classical and quantum regimes, and prove its robustness to external perturbations on the control parameters. This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源