论文标题
合作的多代理深入强化学习,以通过自动武器控制
Cooperative Multi-Agent Deep Reinforcement Learning for Reliable Surveillance via Autonomous Multi-UAV Control
论文作者
论文摘要
使用无人驾驶汽车(UAV)的基于CCTV的监视被认为是智能城市环境中安全的关键技术。本文构成了一个案例,与CCTV-CAMERAS的无人机飞越城市地区,以获得灵活可靠的监视服务。应部署无人机以覆盖大面积,同时最大程度地减少重叠和阴影区域,以实现可靠的监视系统。但是,无人机的运行受到高度不确定性的影响,需要自动恢复系统。这项工作开发了一种基于多代理的深入学习管理计划,用于在智能城市应用中可靠的行业监视。本文采用的核心思想是自主将无人机的不足网络要求与通信补充。通过密集的模拟,我们提出的算法在监视覆盖范围,用户支持能力和计算成本方面优于最新算法。
CCTV-based surveillance using unmanned aerial vehicles (UAVs) is considered a key technology for security in smart city environments. This paper creates a case where the UAVs with CCTV-cameras fly over the city area for flexible and reliable surveillance services. UAVs should be deployed to cover a large area while minimize overlapping and shadow areas for a reliable surveillance system. However, the operation of UAVs is subject to high uncertainty, necessitating autonomous recovery systems. This work develops a multi-agent deep reinforcement learning-based management scheme for reliable industry surveillance in smart city applications. The core idea this paper employs is autonomously replenishing the UAV's deficient network requirements with communications. Via intensive simulations, our proposed algorithm outperforms the state-of-the-art algorithms in terms of surveillance coverage, user support capability, and computational costs.