论文标题

不正当的Schobers和Orlov等价

Perverse schobers and Orlov equivalences

论文作者

Koseki, Naoki, Ouchi, Genki

论文摘要

一个不错的Schober是Kapranov-Schechtman提出的不正当捆的分类。在本文中,我们在Riemann Sphere上构建了不正当的Schobers的示例,该示例是由Calabi-yau Hypersurfaces的镜像对称性产生的天然局部系统的交点复合物进行分类。 Orlov等效性在施工中起着关键作用。

A perverse schober is a categorification of a perverse sheaf proposed by Kapranov--Schechtman. In this paper, we construct examples of perverse schobers on the Riemann sphere, which categorify the intersection complexes of natural local systems arising from the mirror symmetry for Calabi-Yau hypersurfaces. The Orlov equivalence plays a key role for the construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源