论文标题

朝零射手语言识别

Towards Zero-shot Sign Language Recognition

论文作者

Bilge, Yunus Can, Cinbis, Ramazan Gokberk, Ikizler-Cinbis, Nazli

论文摘要

本文解决了零射击手语识别(ZSSLR)的问题,目的是利用在可见的标志类中学习的模型来识别看不见的标志类的实例。在这种情况下,从手语词典中收集的随时可用的文本符号描述和属性被用作知识转移的语义类表示。对于这个新颖的问题设置,我们介绍了三个基准数据集及其随附的文本和属性描述,以详细分析该问题。我们提出的方法建立了身体和手部区域的时空模型。通过利用描述性文本和属性嵌入以及这些视觉表示框架内的这些视觉表示,我们表明基于文本和属性的类别定义可以为识别以前看不见的标志类提供有效的知识。我们还引入了技术,以在正确且错误的零射击预测中分析二元属性的影响。我们预计引入的方法和随附的数据集将为进一步探索手语识别中的零照片学习提供基础。

This paper tackles the problem of zero-shot sign language recognition (ZSSLR), where the goal is to leverage models learned over the seen sign classes to recognize the instances of unseen sign classes. In this context, readily available textual sign descriptions and attributes collected from sign language dictionaries are utilized as semantic class representations for knowledge transfer. For this novel problem setup, we introduce three benchmark datasets with their accompanying textual and attribute descriptions to analyze the problem in detail. Our proposed approach builds spatiotemporal models of body and hand regions. By leveraging the descriptive text and attribute embeddings along with these visual representations within a zero-shot learning framework, we show that textual and attribute based class definitions can provide effective knowledge for the recognition of previously unseen sign classes. We additionally introduce techniques to analyze the influence of binary attributes in correct and incorrect zero-shot predictions. We anticipate that the introduced approaches and the accompanying datasets will provide a basis for further exploration of zero-shot learning in sign language recognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源