论文标题

ABELIAN几何基本组,用于$ p $ - adic领域的曲线

Abelian geometric fundamental groups for curves over a $p$-adic field

论文作者

Gazaki, Evangelia, Hiranouchi, Toshiro

论文摘要

对于$ p $ -ADIC字段$ k $上的曲线$ x $,使用S. Bloch和S. S. Saito的类字段理论,我们研究Abelian几何基本基本组$π_1^{\ mathrm {abrm {abrm {abrm {ab}}}(x)特别是,研究了$π_1^{\ mathrm {ab}}(x)^{\ mathrm {geo}} $的子组,该子组对$ x $的几何和$ x $的几何和亚伯封面进行了分类,从而使$ x $的覆盖率允许使用$ x $的特殊模型。在假设$ x $具有$ k $ - 合理点的假设下,$ x $具有很好的减少,其雅各布品种具有良好的普通降低,我们给出了$π_1^{\ mathrm {abrm {abrm {abrm {ab}}}(x)^{\ mathrm {geo {geo}} $的上层和下限。

For a curve $X$ over a $p$-adic field $k$, using the class field theory of $X$ due to S. Bloch and S. Saito we study the abelian geometric fundamental group $π_1^{\mathrm{ab}}(X)^{\mathrm{geo}}$ of $X$. In particular, it is investigated a subgroup of $π_1^{\mathrm{ab}}(X)^{\mathrm{geo}}$ which classifies the geometric and abelian coverings of $X$ which allow possible ramification over the special fiber of the model of $X$. Under the assumptions that $X$ has a $k$-rational point, $X$ has good reduction and its Jacobian variety has good ordinary reduction, we give some upper and lower bounds of this subgroup of $π_1^{\mathrm{ab}}(X)^{\mathrm{geo}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源