论文标题
图像数据隐藏了多尺度自动编码器网络
Image data hiding with multi-scale autoencoder network
论文作者
论文摘要
法师隐身是隐藏信息的过程,这些信息可以是封面图像中文本,图像或视频的过程。对密码学比密码学的优势在于,预期的秘密信息不会引起注意,因此更适合在诸如公民抗命运动之类的高度监护环境中进行秘密交流。社交媒体和消息传递应用程序中的互联网模因已成为全球流行的文化,因此,这种民间习俗是图像隐身术的良好应用方案。我们试图在这项工作中的互联网模因上探索并采用隐身技术。我们通过使用多尺度自动编码器网络更改Cons-BN-Relu块卷积层来实现并改善隐藏模型,从而使神经网络学会在高级功能空间中嵌入消息位。与在行像素域上卷积特征过滤器的方法相比,我们提出的MS隐藏网络学会了将秘密隐藏在低级和高级图像功能中。结果,提出的模型将比特率显着降低到经验上的0%,所需的网络参数远小于隐藏模型。
mage steganography is the process of hiding information which can be text, image, or video inside a cover image. The advantage of steganography over cryptography is that the intended secret message does not attract attention and is thus more suitable for secret communication in a highly-surveillant environment such as civil disobedience movements. Internet memes in social media and messaging apps have become a popular culture worldwide, so this folk custom is a good application scenario for image steganography. We try to explore and adopt the steganography techniques on the Internet memes in this work. We implement and improve the HiDDeN model by changing the Conv-BN-ReLU blocks convolution layer with a multiscale autoencoder network so that the neural network learns to embed message bits in higher-level feature space. Compared to methods that convolve feature filters on the row-pixel domain, our proposed MS-Hidden network learns to hide secrets in both low-level and high-level image features. As a result, the proposed model significantly reduces the bit-error rate to empirically 0% and the required network parameters are much less than the HiDDeN model.