论文标题

测试案例优先级的信息分类属性:适用性,机器学习

A Taxonomy of Information Attributes for Test Case Prioritisation: Applicability, Machine Learning

论文作者

Ramírez, Aurora, Feldt, Robert, Romero, José Raúl

论文摘要

大多数软件公司都有广泛的测试套件并连续重新运行部分,以确保最近的变化没有不利影响。由于测试套件的执行成本很高,因此行业需要测试案例优先级的方法(TCP)。最近,TCP方法使用机器学习(ML)来利用有关正在测试的系统(SUT)及其测试用例的信息。但是,应根据收集信息的成本进行批判性评估基于ML的TCP方法添加的值。本文分析了TCP研究的二十年,并介绍了已使用的91个信息属性的分类法。这些属性与其信息源及其提取过程的特征进行了分类。基于此分类法,根据信息可用性,属性组合和适用于ML的数据的定义,对使用工业数据和应用ML验证的TCP方法进行了分析。依靠大量的信息属性,假设可以轻松访问SUT代码和简化的测试环境,则被确定为可能会阻碍基于ML的TCP的工业适用性的因素。 TEPIA分类学提供了一个参考框架,以考虑信息属性的成本效益,统一术语并评估替代方案。

Most software companies have extensive test suites and re-run parts of them continuously to ensure recent changes have no adverse effects. Since test suites are costly to execute, industry needs methods for test case prioritisation (TCP). Recently, TCP methods use machine learning (ML) to exploit the information known about the system under test (SUT) and its test cases. However, the value added by ML-based TCP methods should be critically assessed with respect to the cost of collecting the information. This paper analyses two decades of TCP research, and presents a taxonomy of 91 information attributes that have been used. The attributes are classified with respect to their information sources and the characteristics of their extraction process. Based on this taxonomy, TCP methods validated with industrial data and those applying ML are analysed in terms of information availability, attribute combination and definition of data features suitable for ML. Relying on a high number of information attributes, assuming easy access to SUT code and simplified testing environments are identified as factors that might hamper industrial applicability of ML-based TCP. The TePIA taxonomy provides a reference framework to unify terminology and evaluate alternatives considering the cost-benefit of the information attributes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源