论文标题

在耐力空间中无数函数的衍生品的积分手段

Integral means of derivatives of univalent functions in Hardy spaces

论文作者

Pérez-González, Fernando, Rättyä, Jouni, Vesikko, Toni

论文摘要

我们表明,耐力空间中的规范$ h^p $满足 \ begin {equation} \ label {absteq} \ | f \ | _ {h^p}^p \ asymp \ int_0^1m_q^p(r,f')(1-r)^{p \ left(1- \ frac1q \ right)} \,dr+| f(0) \ end {equation}对于所有单价函数,只要$ q \ ge2 $或$ \ frac {2p} {2+p} <q <2 $。这种渐近性以前是在$ 0 <p \ le q <\ infty $和$ \ frac {p} {1+p} <q <q <q <q <q <q <p <p <p <2+\ frac {2} {157} $ by Pommerenke(1962),Baernstein,Girela和Pelela and Pelez(2004)(2004年)(2004年)(2004年)。还表明,如果$ 1 \ le q <\ infty $,则满足\ eqref {absteq}。还简要讨论了在加权伯格曼空间的设置中\ eqref {absteq}的对应物。

We show that the norm in the Hardy space $H^p$ satisfies \begin{equation}\label{absteq} \|f\|_{H^p}^p\asymp\int_0^1M_q^p(r,f')(1-r)^{p\left(1-\frac1q\right)}\,dr+|f(0)|^p\tag† \end{equation} for all univalent functions provided that either $q\ge2$ or $\frac{2p}{2+p}<q<2$. This asymptotic was previously known in the cases $0<p\le q<\infty$ and $\frac{p}{1+p}<q<p<2+\frac{2}{157}$ by results due to Pommerenke (1962), Baernstein, Girela and Peláez (2004) and González and Peláez (2009). It is also shown that \eqref{absteq} is satisfied for all close-to-convex functions if $1\le q<\infty$. A counterpart of \eqref{absteq} in the setting of weighted Bergman spaces is also briefly discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源